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ABSTRACT: In [ l j a  dispersion re la t ion  for the vibrat ions  of an e las t ic  

rod of c i rcular  cross sect ion with an e l ec t r i c  current f lowing over its 
surface was obtained,  and a de ta i l ed  study was made  of the par t icular  

case of ax ia l ly  symmet r i c  vibrations.  The present paper is devoted to 

an examina t i on  of the longwave bending vibrat ions of e las t ic  rods 

with an e l ec t r i c  current f lowing over their  surface. These vibrat ions 

are of spec ia l  interest  s ince they have  the lowest frequency and hence  
the last s tabi l i ty .  

1. i n v e g i g a t i o n  of the bending v ib ra t iom of a c i rcu la r  rod on the  
basi~ of the genera l  equation~ of  the  theory of e l a s t i c i t y .  We shal l  
consider a pe r fec t ly  conduct ing solid rod of radius a with free ends 

and a constant  current I f lowing over its surface.  Let the d i sp lacements  
of points on the rod be descr ibed by the vector  

u =  U ( r )  e x p i ( - - c o t +  m O +  kz ) .  

The case of ax i a l l y  symmet r i c  vibrat ions with m = 0 was thoroughly 

inves t iga ted  in [1 ] .  Here we shal l  consider the case of bending v ibra-  

t ions (m = 1). For an in f in i te  rod the dispersion re la t ion  for such v i -  

brations has the form 

Id~i [ = 0 (i,/" = i ,  2, 3) , (1.1) 

with  the fol lowing e l emen t s  of the de te rminan t :  

t r / t 1 
(x), 

Y ~ - -  1 1 t , 
d ~  = - ~ - - 4 -  (p~ ( y )  - -  Ix~ (y~ - ~] ~ (x), 

d a  = 1 - -  % (X) ,  d2~ = q~ (X)  - -  ~r ( Y ) ,  

Y "  I I 
d ~  = cpr ( X )  2 ~1 ( y )  , d3~ = h 2 - -  " f - - ~ ,  

1 
d32 = y 2 ,  d33 2(1 §  ' (1.2) 

Here  

Y ~ = k 2 a  ~ [ p O f l  - -  l )  ~ x 2 ( 2 y S ( l + v ) - - ! ) ,  \ k2~s 

Ho -~ I ~ 21 
h~ = 8--~- ~ = 200aa~E , Ho ~ 10a 

& (~) K~ (~) 

p~0 ~ 

where E is the modulus  of e l a s t i c i t y ,  X, p the  Lain6 coeff ic ients ,  v 

Poisson's ra t io ,  p the densi ty  of the  m a t e r i a l ,  I the  current  in  amps,  

t t  0 the m a g n e t i c  f ie ld  at the surface of the conductor  a t  r = a, and 

Jr(g), Kr(g) are cy l ind r i ca l  funct ions .  

Solving (1.1) for h ~ , af ter  ce r t a in  t ransformat ions  we get  

t :  = - - - -  (i, / = i ,  2, 3) (1.8) 
i v y  Ibo.[ 

The e l e m e n t s  of the de t e rminan t  in  (i.3) have  the form 

a n  = ~ (t  + v ) - -  t ,  

al~ = aia = 2y ~ (t @ v) - -  1, a~r =r ( X ) - -  2 ,  

a ~ , = - - 2 [ ~ ( Y ) - - 2 ] - - x  ~ [ 2 y ~ ( t + v ) - l l ,  

as2 = ~ (Y) - -  2, a3a = t ,  

a a = ~ (X) - -  i ,  a s ~ = - -  [ p  (t  + v) - -  ~] [~ (Y) - -  1], 

b n =  2 [l §  

br~ = (F~ - -  t) [~ (x )  - -  1] - -  

{x 2 [ p  (1 + v) - -  t ]  - -  t}  top (y)  - -  t l ,  

b ~ a = - - 2 ( Y 2 - - t ) /  [ q ~ ( Y ) - - i ] - - 2  [q~ (Y) - -  l ] ,  

b21 = 0, b22 = (p (Y) - -  q~ (X} ,  

b~8= 2 /  [qo(Y)- -  t ] - - Y ~ - -  2 [ q ~ ( y ) - -  11, 

bas=  1 - -  2y~(t  §  

be1=  t,  be2 = y~ (1 + v )  [~ (X) - -  t]  [(p ( Y ) - -  l ] ,  

cp (~) = ~3o (~) / .:~ (~).  (1.4) 

In the case of long waves (ak << 1) for the functions ~(~) and ~r(~) 
we have  the fol lowing approx imate  expressions: 

(~ (~) ~ 2 - -  ~2 / 4, 2 [i  -7 *1 (~)1 = 

�9 -~ --2Ko (~) / KI '  (~) ~-- 2 ~  In (2 / ~ ) ,  (1.5) 

K ~ ( ~ ) . ~ I / ~ ,  K o ( ~ ) ~ - - -  ( l n ( ~ / 2 ) §  

Here in y = C ~ 0.577 is Euler 's constant .  Using these expansions, 

from .(1.3) we get  the dispersion re la t ion  for longwave vibrat ions:  

o)~p t a~k 2 + ~  In + C + (1.6) 
k2E = ~-  ~-. . 

2. Approximate  theory of longwave bending vtbratinns of aa  e las t i c  
rod carrying current ,  a) General  re la t iona.  We shal l  consider a homo-  
geneous cy l ind r i ca l  rod of arbi trary but constant cross sect ion and in- 

f in i te  l eng th .  We shal l  assume tha t  an e l ec t r i c  current I f lows over the 

surface of this  rod. If the wave leng th  of the bending vibrat ions is much  

grea ter  than the rod d iamete r ,  and the vibrat ions themse lves  are p lane,  

then  the equat ion  of the vibrat ions may  be wri t ten in the form [2] 

3~w 34w 
p A  Ot ~ = - -  E J  ~ -7 I v + . . . .  (2.1) 

Here A is the cross-sec t ional  area of the rod; the wave is propagated 

in the d i rec t ion  of the rod axis z ; w is the d i sp lacement  in  the di rec-  
t ion of the y axis ,  perpendicular  to the axis of the rod, J is the mo-  

men t  of iner t ia  of the rod cross sect ion,  and l~ the ex te rna l  force 

ac t ing  on unit  length  of the rod in the d i rec t ion  of the d i sp lacement  

w. In the case of iongwave vibrat ions the discarded terms in (2.1) have  

a higher  order of smal lness ,  in the case of a cur ren t -car ry ing  rod the 
force ]y owes i ts  man i fe s t a t ion  to the m a g n e t i c  f i e ld .  If we take  two 

sect ions perpendicular  to the axis of the undeformed rod and a dis tance 

dl0 apart ,  then 

f 8~dll) lt"-n d S  "~ - -  ~ @ H2n (2.2) 
IS) (s) 

Here H is the in tens i ty  of the m a g n e t i c  f ie ld  at the surface of the de-  

formed rod, n is the outward norma l  to the l a t e r a l  surface of the 

i so la ted  e l e m e n t  of the deformed conductor ,  dS is an area e l e m e n t  

of the l a t e r a l  surface,  ds is a contour e l e m e n t  of the cross sect ion,  

and R is the radius of curvature  of the rod axis ;  the in tegra ls  are ~aken 

over  the l a t e r a l  surface and over the closed contour of the cross sect ion,  
r e spec t ive ly .  

In the case of sma l l  deformat ions  we may  assume that  

t a~w (z, t) 
It Oz ~ = - -  w", H = No -7 H~, (2.3) 
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where lft is the perturbation of the magnetic field. Then expression 
(2.2) for the force fcan be linearized with respect to perturbations of 
the magnetic field [3]. For fy we have 

w" 1 
]~ = - ~  l t o ' ~ n u y d s - - - ~ - ~  H o . l t , n v d s = ~ h - 4 - h .  (2.4) 

(~) (s) 

Here we have taken into account the fact that in the absence of vi- 
brations H = I-I0, f = 0, while H1 denotes the value of the magnetic 
field perturbation at the surface S. From (2.4)it  is clear that the 
calculation of I3 presupposes determination of the field perturbation 

HI. 
In computing the perturbed field H it is natural to use the scalar 

potential �9 : H = Vff, where r satisfies the Laplace equation /x~ = O. 
On the surface of ~he conductor, in virtue of the assumption made above, 
that the entire current flows over the surface, the field must satisfy 
the boundary condition 

H . n  = 0 .  (2.5) 

Let the deformed axis of the rod be described by the equation y = 
= w(x,t). We shall go over to a new coordinate system X, Y, Z linked 
with the old one by the relations 

X = x, Y =  y - - w ,  Z =  z. 

In the new system the equation Ar = 0 takes the form 

02w O0 Ow 0~0 {Ow ~"-0~0 (2.6) 
Ax ,  y ,  z q } - -  OZ2 0 Y @ 2  og OYOZ \ ~ - /  ~ " 

We shall solve this equation by the method of perturbations. We 
set ~p = q0 + qr. The potential of the unperturbed field satisfies the 

equation 

h x ,  y % -- O. (2.7) 

Assuming that the bending of the conductor is small, we shall 
neglect terms of the second order of smallness in w, et and their de- 

rivatives. 
Then for qr from (2.6) we get the equation 

O~w 0~o 
AX, Y, Z~I ~ ~-~  ~ " (2.8) 

The solution qt of Eq. (2.8) can be represented as the sum of the 
solutions r of the homogeneous equation and the particular solution 

'F of the inhomogeneous equation 

~h = q~ + q~'. (2 .9)  

In connection with the decomposition (2.9) of the field perturbation 
into two parts, it is likewise natural to divide the force/2 in (2.4) into 

two components, 

h = 1' + I ' ;  (2.10) 

The inhomogeneous equation has the particular solution 

0tp0 
tp' = w  "~-- .  (2.11) 

The solution of the homogeneous equation 

0 ~ 
( A x ,  v + -~--g)q)=0 (2.12) 

is uniquely determined by boundary condition (2.5). Setting 

q~ = w ~  (X,  Y), w = w o exp i k Z  (w o = wo( t ) ) ,  (2 .13)  

we can rewrite (2.12) in the form 

(AX, ~, - -  k 2) �9 , -  0 .  (2.14) 

Since in deriving (2.1) it was assumed that k --~ 0, for our purposes 
Eq. (2.14) can be solved approximately, with account only for the 
terms containing lower powers of k z . However, in simple cases it is 
more convenient to start from exact solutions of (2.14) and perform 

the expansion in powers of k z in the final formulas. This is the method 
used below. 

b) Bending vibrations of a circular rod. Using the cylindrical system 
of coordinates R, ~, Z(X = R cos ~q, Y = R sin %), we can-write the 
scalar potemial of the unperturbed magnetic field of a circular rod %, 

the solution of Eq. (2 3), as 

% = 2/lo I ~  (H o = 21 / i 0a ) .  (2 .15)  

Here I is the current flowing over the surface of the conductor in amps, 

H 0 is the intensity of the unperturbed magnetic field at the surface of 

the conductor, and a is the radius of the conductor, with the help of 

(2.15) we will find the particular solution of (2.11) for the perturbation 

of the magnetic field: 

0(po 21 
qg" ~ w ' ~ ' ~ -  ~ wl~R--eos~ �9 ( 2 . 1 6 )  

The corresponding solution of the homogeneous equation (2.14) will be 

= BwK r (k2~) cos ~} (B = 21 / iOakaK( (ka ) )  . (2.17) 

The constant I3 was determined from condition (2.5), the prime 
denotes the derivative with respect to the total argument. Substituting 
expressions (2.15), (2.16), and (2.17) and (2.4) and (2.10), and also 
bearing in mind that ny = sin $, Y = a sin ~, ds = ad~, we get 

h = a/~oolZw", ]' = a/~ool2w / a ~, 

] "  = 1/10012WK r (ka) ] a2kaK1 ' (ha). (2.18) 

Since ]u ~ h + /~ = 11 + ]' -{- ]" ,  adding the components of the 
force (2.18), using (1.5), and assuming that 

w ~ exp l (-- cot -}- kZ), (2.19) 

we find the force acting on unit length of the rod, 

.[u = - -  ~/roo 12wk~ (ln V~ ka .q- C "-]- l/~.) + 0 (k 2) . (2.20) 

Substituting (2.20) into (2.1), we get the dispersion relation for the 
bending vibrations of a circular rod 

pAco s = g J k  4 -t- i[1.ool~k2 (ln a/2 ka -l- C + x/2) . (2.21) 

If we consider that the moment of inertia of a circle J = 1/4rra "~, 
then Eq. (2.21) coincides with Eq. (1.6). 

c) Bending vibrations of a thin conductor of elliptical cross sect ion .  
i. Let the contour equation of the conductor cross section be described 
in the coordinate system X, Y by the equation 

X 2 / a  z +  y 2 / b  2 = 1 .  (2.22) 

We introduce the elliptical coordinates ~, ~ with the help of the 
relation 

; =  X +  iY  = h ch (~ + i~l) 

( h2~----.a2--b 2, a ~ h c h ~ 0 ,  b ~ h s h ~ 0  1 
0..< ~ < or - -  ~ ~< ~l<~X, ~ o = l n [ ( a + b ) / h ] ] .  (2.23) 

The function that realizes the conformal mapping of the exterior 
of the ellipse (2.22) onto the exterior of the unit circle has the form 

; ._}- ]/';9 __ h 2 
W ~ a + b (2.24) 

The magnetic field of the unperturbed cylinder can be described 
both by the scalar potential ~00 and by the z-component of the vector 

potentia ! A z,  

Ho = V%, H o = rot (z0Az). (2.26) 

The complex potential F of the magnetic field of a straight con- 
ductor is 

F = A z - } -  i% = 0.2 1 In W.  (2.26) 

Substituting expressions (2.23) and (2.24) into (2.26), we get 

r = 0.2 Irl. (2 27) 
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Hence we find the strength of the magnetic field at the surface of 
the unperturbed elliptical conductor 

2I 
H0 = 10h (oh 2 ~o - -  cos 2 ~11 (2.28) 

and the particular solution (2.11) 

2Iw sh ~ cos q (2.29) 
(~" = T 0 ~  ch  2 ~ - -  cos 2 ri 

2. In elliptic coordinates Eq. (2.14) is written in the form 

[ 0 '  O~ ] 
o U  + ~ - ~h2 (ch '~- -  cos, n) ~v = o .  (2.3o) 

We will represent the solutions of (2.30) as ~, = k(~)~(~). Then 
[4, ~] 

X" (~) @ (a -~ t6q ch 2[) X (~) = O ( k'h' '~ (2.31) 

~"( t l ) - - (aJr-16qcos2t l ) r  q ~ ' 3 2 - ]  " (2.32) 

From the requirement of periodicity of ~(~1) we find the discrete 
eigenvaIues ap(q) and the corresponding Mathieu functions. In our 
case these will be even functions of odd index: 

~p ~ Ce2n+i(rl, q), p ~ 2n -f- 1 . (2.33) 

As Xp(g) we must take the solution ~a t  satisfies the condition 

This property is possessed by the so-called Fekz n+l(g, --q) functions, 
which we shall denote by Qz n+t(g, q). The general solution of Eq. 
(2.30) may be written Thus: 

~ = w l I  ~ = w ~ bpQp(~, q) cev( q, q) . ( 2 . 3 4 )  
p ~ 2 n + l ~ l  

In connection with the fact that in the sense of approximation (2.1) 
the quantity 

q ~ ala2k~h~ <~ t , (2.35) 

in the Fourier expansions of the Mathieu functions (2.33) it is sufficient 
to confine oneself to terms of the expansion containing q in the zeroth 
and first powers [4]. Therefore, we may assume that 

c%n+l Q1, q) "~ A~nr cos (2n + t) q + 

+ A~/.~ +~) ~os (2n + ~) n + A~2~+r) cos (2. - -  i) n 

(Av(~) ~ 1, A (p) ~ ~ (2.36) 

3. The coefficients bp in (2.34) are determined from the boundary 
condition H �9 n = 0, i . e . ,  

0V, 0 
" ~ - - - ~ ( q ) + q r  ~ = ~ o - - - - l n l ( a + b ) / h ] .  (2.37) 

Taking into account (2.29) and setting 

0 sh ~ cos q 
0~ c h ~ - - c o s : q  

co 

= - -  2 ~pcep (*q, q) 
p = l  

(2.38) 

for ~ = go, we find 

co 

21 cep 01, q) . (2.39) 
~ ~ 10---~ ~ ~ 3~ Q~(~' q) v---2~+:t=l (OQ~ / OUr 

We note that if Cep(~), q) can be written in the form (2.36), then the 
coefficients gp in (2.38), (2.39) are expressed in terms of the coef- 
ficients of the Fourier expansion C~p 

r162 
0 s h  cos ~1 E a~ cos pn (~ = ~o) (2.40) 

0~ ch 2 ~ - -  cos 21] p=l 

by the relations 

~p = % + %_iAp+(~-~) + %+~A (~) . (2.41) 

The values of ap in series (2.40) are found in elementary fashion, 
but the expressions obtained are clumsy and are not given here. 

4. Knowing the expressions for the fields, we now turn to com- 
puting the forces 11 and ]~ ----- 1' -1-/". These computations may also 
conveniently be performed in elliptical coordinates. In this case 

eh  ~o s i n  71 
d s = h  ~refi2~o--eos~ld~, a T =  Vch2~*--c~ ' (2.42) 

1 O~pt 
Y ~ h sh  ~o s in  ~1, H1 - -  

h t f c h ~ o - -  cos  "2 ~ 011 " 

Substituting (2.42) into the formula for f ,  we obtain, using (2.23) 
and (2.28), the expression 

f ,  = t / ,o j2w"b / (a + b). (2.43) 

Integrating by parts, we reduce Eq. (2.4) for fa = / '  "+- f"  to the 
form 

2~ 

I i o0_ ch~osinn 
]2 = ~ I~1 6h 2 ~o - -  COSt lq d~l ' ( 2 . 4 4 )  

o 

The computation of Is is appreciably simplified by the fact that 

0 ch ~ sin I 1 0 sh ~ cos 11 (2.45) 
0q ch 2 ~ - c o s  '~q ~ -  0~ ch ~ - c o s  2~1 

Consequently, after very simple calculations, using (2.39), we find 

j" = */2ooI2w ( t  / a 2 -F I / b2),  ( 2 . 4 6 )  

_n ~ ~ ,  . ,  q~(~o, q) 
]" - t00 ~ -- ~ ~q~ ( 0 Q ~ _ _ ~ o .  (2.4~) 

5. From (2.1) and (2.43), (2.46), and (2.47) with condition (2.19) 
we get the dispersion relation 

pAa) ~ = E J M - ~  12 [ t.t_ 1 1 
ion L 2 (-~- +-~-) - -  

__k 2 b 1 o~ Qp (~~ q) ] 
~+~,-+ ~ Y' ~ ' ( ~ ~  q) (oQ--~NT~__~ �9 (2.48) 

P=t  

6. When the eccentricity is small, i.e., h / a  << 1, expression 
(2.47) for f '  can be evaluated explicitly. In fact, expanding the left 
side of (2.38) in a Fourier series and neglecting terms of higher order 
of smallness than 

e-2~ ~ h~ 1 a 2 ( 2 . 4 9 )  

we get 

0 sh ~ cos ~l 
0~ ch ~ ~ - -  cos ~ ~l ~ 2e-~" {cos q + 3e -~~ cos 3~]}. (2.50) 

The expansions of the functions Cep have the form 

ce 1 (q) -'= cos ~l + q cos 3q ~ . . . .  ce3(q) = cos 31 l + .  ~ ~ (2.53.) 

4 1 1 t 
(2.54) 

and, consequently, 

2h 2h ( h' 
~* a+----b-' ~ a = - -  a-T: ~ - q - ~ 3  ( a + b )  2 ]"  (2.52) 

Here we have taken into consideration the fact that e go = (a + b)/h.  It 
is now clear that, with the accuracy assumed, in (2.47) there remains 
only the first term 

12 4 Q~ 
f" ~ ~ w (a + b) ~ (OQ1/O~)~=~. " (2.53) 

Using the approximation 
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we obtain (see (2.46) and (2.53)) 

12 = J' ~- 1" = 4 lO0 (a @ b) 2 i + ( O Q - / ~ ) ~ = 5 o  . (2 .55)  

7. The expression for Qt can  be found as follows: substi tuting in 
(2.31) for X(g) the value a t ~ 1 - 8q and considering that ,  with the 

assumed accuracy,  

ch 2~ ~ 1/2e2~, (2.56) 

we find the approximate  equat ion for Qt(~) 

O~" ([) - -  (1 - -  8q q- Sqe 2~) O~ ([) = 0 .  (2.5'7) 

This Bessel equat ion with f rac t ional  index has the fol lowing solution 

with the required behavior  as g ~ ~o: 

QI (~) ~ K 1/-i=-~7[ ( gg-qe ~) ~ Kl_aq ( ]/-8-qe~) . (2.58) 

Starting from the def ini t ion 

Kn__ zt [ i _ n ,  ln], i n =  ~ ( z )n+2" t ,(2.59) 
2s in  ~n ' 2 -  r! P ( n @ r  n- 1) 

r = O  

we can obta in  

-1 

Hence,  with (2.23) and (2.35),  we find 

Q1 (~) 

k~(a?b)  2b ~- k(a-I-b) __ a@b a- -b  = - tin ~ ~ --N-- c + --N-] (2.61) 

and, consequently (see (2.55)), 

wk ~ b 
h = - -  - iN-  I~ a--4W' h = 

I ~ 2b k 2 [ l n ~ A _ C @ . _ ~ _ . ~ b b ] .  (2.62) 
= - - w  t00 a@b 

Thus, the f ina l  expression for the to ta l  force wi l l  be 

I ~ 2 b  [ ~ a Q - b  a ]  
1~=--~o T f f 6 - - ~ T k ~  In + ~ - - g ~ -  + N -  �9 (2.6a) 

When a = b this formula  goes over  into (2.20).  On mak ing  the sub- 

s t i tut ion (2.63),  we obta in  dispersion re la t ion  (2.48) in the form 

pAo~ ~ ~ EEka -~- 

q - . ( t  k 2 2b [ k(ant-b) . C a-~-b a ] 
10t) -7@--6 In - - ~ - - - -  - -  ~ -~- -~- . (2.64) 

3. Stability conditions for current-carrying rods. At certain values 
of the current 1 the frequency ~z, linked with the current and the 
wavelength by Eq. (2.21) for circular rods and by Eq. (2.64) for ellip- 
tical rods, becomes  nega t ive .  This means that  there is a solution for 

w that  leads to an exponent ia l  growth of the random perturbations.  

Hence i t  follows that ,  s tart ing from these current values,  a straight 
conductor wi l l  be unstable.  

a) For a solid c i rcular  conductor from dispersion relat ion (1.5) or 
from (2.21), after substi tuting the moment  of iner t ia  of a c i rc le  J = 

= ~ra4/4, we get the fol lowing expression for the value of the current 

at  which the conductor loses s tabi l i ty :  

iOa'~k g ~  
J* > 2 g i n  (2 /ka ) -  C - -  ~Y_, " (3.1) 

b) For an e l l i p t i c a l  conductor from dispersion relat ion (2.64) we 

get  the fol lowing expression for the value of the current at which the 
conductor loses s tab i l i ty :  

t0k g ~  g ~  
I ,  > g ~  ] / I n  [4/k (a @ b)] - -  '/2 a/b -- 1/.2C (a .~- b)/b " (3 .2)  

For vibrat ions of a solid conductor of e l l i p t i c a l  cross sect ion about 
the major  axis of the e l l ipse  J = 7rab~/4, for vibrat ions about the minor 

axis i = ~ra'~b/4. 
Example .  Consider a c i rcular  conductor of radius a = 0.1 cm.  Let 

a bending perturbat ion with wave length  L = 10 cm be propagated along 
i t .  In another  case le t  a =  1 cm and L = 100 cm.  Let g = 106 k g / e m  z . 

Then, for the first case from (8.1) we obtain I. > 39 kA, for the second 

case I. > 386 kA.  
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