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ELASTIC BENDING VIBRATIONS OF A ROD CARRYING ELECTRIC CURRENT
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ABSTRACT: In [1] a dispersion relation for the vibrations of an elastic
rod of circular cross section with an electric current flowing over its
surface was obtained, and a detailed study was made of the particular
case of axially symmetric vibrations. The present paper is devoted to
an examination of the longwave bending vibrations of elastic rods
with an electric current flowing over their surface. These vibrations
are of special interest since they have the lowest frequency and hence
the last stability.

1, Investigation of the bending vibrations of a circular rod on the
basis of the general equations of the theory of elasticity. We shall
consider a perfectly conducting solid rod of radius a with free ends
and a constant current I flowing over its surface. Let the displacements
of points on the rod be described by the vector

u=U(r) exp i (— ot + mb + kz).

The case of axially symmetric vibrations with m = 0 was thoroughly
investigated in [1]. Here we shall consider the case of bending vibra-
tions (m = 1), For an infinite rod the dispersion relation for such vi-
brations has the form

ldizl=0 (i,7=1,2,3, (1.1

with the following elements of the determinant:
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where E is the modulus of elasticity, A, pthe Lamé coefficients, v
Poisson's ratio, p the density of the material, I the current in amps,
H, the magnetic field at the surface of the conductor at r = ¢, and
Ji(€), Ky(§) are cylindrical functions.

Solving (1.1) for h?, after certain transformations we get

Bt z? lai]' |
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The elements of the determinant in (1.3) have the form
ayn =y +v) -1,

ap = a3 =2y (1 +v) — 1,

g = — 2 [p (¥Y) — 2] — 2® [29* (1 + v) — 1],

(i,i=1,2,3), (1.3)
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In the case of long waves (ak « 1) for the functions ¢(£) and ¥(E)
we have the following approximate expressions:

e ) =2 —E8/4 2+ B =
= —2K, (5)/ K" §) = 28 In 2/ v), (1.5)
KE=1/E, Ko (B) = — (In(§/2) + 0).

Here In y = C ~ 0.577 is Euler's constant. Using these expansions,
from (1.3) we get the dispersion relation for longwave vibrations:
2, 2
%=7t—a2k2+mﬂ;—2E<ln%a—+C+%>. (1.8)
2. Approximate theory of longwave bending vibrations of an elastic
rod carrying current, a) General relations, We shall consider a homo-
geneous cylindrical rod of arbitrary but constant cross section and in-
finite length. We shall assume that an electric current I flows over the
surface of this rod. If the wavelength of the bending vibrations is much
greater than the rod diameter, and the vibrations themselves are plane,
then the equation of the vibrations may be written in the form [2]
2, 4
pA%'g’—=—EJ%§+fy+..., (2.1)
Here A is the cross-sectional area of the rod; the wave is propagated
in the direction of the rod axis z; w is the displacement in the direc-
tion of the y axis, perpendicular to the axis of the rod, J is the mo-
ment of inertia of the rod cross section, and f, the external force
acting on unit length of the rod in the direction of the displacement
w, In the case of longwave vibrations the discarded terms in (2.1) have
a higher order of smaliness. In the case of a current-carrying rod the
force f, owes its manifestation to the magnetic field. If we take two
sections perpendicular to the axis of the undeformed rod and a distance
d iy apart, then

1t ¢ e 1 ¥
f:—m 5 II-ndSV——S?(g)HZn <1+F>d3. (2.2)
(5 ()

Here H is the intensity of the magnetic field at the surface of the de-
formed rod, n is the outward normal to the lateral surface of the
isolated element of the deformed conductor, dS is an area element
of the lateral surface, ds is a contour element of the cross section,
and R is the radius of curvature of the rod axis; the integrals are taken
over the lateral surface and over the closed contour of the cross section,
respectively.
In the case of small deformations we may assume that
1 32w (z, 1)

- = e = — w",

7 ) H=H+H, s (2.3)
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where 4, is the perturbation of the magnetic field. Then expression
(2.2) for the force f can be linearized with respect to perturbations of
the magnetic field [3]. For fy we have

”

w

1
ty= ﬁ(& Hen yds —Zx_n—§} Ho-Hingds=hH+fo (2.4)

(s) (s}
Here we have taken into account the fact that in the absence of vi-
brations H= Hg, f= 0, while H; denotes the value of the magnetic
field perturbation at the surface S. From (2.4) it is clear that the
calculation of f, presupposes determination of the field perturbation
Hl-

In computing the perturbed field H it is natural to use the scalar
potential ®: H= V&, where & satisfies the Laplace equation A& = 0.
On the surface of the condu'ctor, in virtue of the assumption made above,
that the entire current flows over the surface, the field must satisfy
the boundary condition

Hn=0, (2.5)

Let the deformed axis of the rod be described by the equation y =
= w(x,t). We shall go over to a new coordinate system X, Y, Z linked
with the old one by the relations

X =z, Y=y—w, Z = 3.

in the new system the equation A® = 0 takes the form

02w 00

Ax,v,z® =z 5v T 257 9V (2.6)

w0 dw \2 0*®
<57 > avE ”

we shall solve this equation by the method of perturbations. We
set & = ¢y + ¢. The potential of the unperturbed field satisfies the
equation

Ax y9a=0. (2.7

Assuming that the bending of the conductor is small, we shall
neglect terms of the second order of smallness in w, ¢ and their de-

rivatives.
Then for ¢; from (2.6) we get the equation

9%w gy
Ax,v,2% = 371 3y (28)
The solution ¢, of Eq. (2.8) can be represented as the sum of the
solutions ¢ of the homogeneous equation and the particular solution
¢ of the inhomogeneous equation

o=+ 9" (2.9

In connection with the decomposition (2.9) of the field perturbation
into two parts, it is likewise natural to divide the force f5in (2 4) into
two components,

fa=1-+f! (2.10)
The inhomogeneous equation has the particular solution
d
¢ =w a;’{,?‘ . (2.11)
The solution of the homogeneous equation
62
(Ax,y + 37)9=0 (2.12)

is uniquely determined by boundary condition (2.5). Setting

p=w¥ (X,Y), w = wy exp ikZ (wo = wy(t)) | (2.13)

we can rewrite (2.12) in the form

(Bzy—F) ¥=0, (2.14)
Since in deriving (2.1) it was assumed that k = 0, for our purposes
Eq. (2.14) can be solved approximately, with account only for the
terms containing lower powers of K? . However, in simple cases it is
more convenient to start from exact solutions of (2.14) and perform

the expansion in powers of k* in the final formulas. This is the method
used below.

b) Bending vibrations of a circular rod. Using the cylindrical system
of coordinates R, 9, Z(X =R cos §, Y = Rsin §), we can-write the
scalar potential of the unperturbed magnetic field of a circular rod ¥y,

the solution of Eq. (2.7), as

Qo = 10 I9 (Hg == 21/ 10a), (2.15)

Here I is the current flowing over the surface of the conductor in amps,
H, is the intensity of the unperturbed magnetic field at the surface of
the conductor, and « is the radius of the conductor. with the help of
(2.15) we will find the particular solution of (2.11) for the perturbation
of the magnetic field:

, 0 1
¢=wgpy = wm-cosﬁ . (2.16)

The corresponding solution of the homogeneous equation (2.14) will be

¢ = BwkK; (kR) cos & (B = 21/ 10akeK,’ (ka)). (2.1T)

The constant B was determined from condition (2.5), the prime
denotes the derivative with respect to the total argument. Substituting
expressions (2.15), (2.16), and (2.17) and (2 4) and (2.10), and also
bearing in mind that Dy = sin 8, Y= asin B, ds= ad9, we get

fr = Yal?w", 1= Yyeel?w [ a?,

7' = Y1pl?%wKy (ka) [ a®haK," (ka) . (2.18)

Since fy = i+ fo= fi + ' - ', adding the components of the
force (2.18), using (1.5), and assuming that

w~ exp i (— ot + kZ), (2.19)
we find the force acting on unit length of the rod,
fy = — Yl Pwk? (In Yz ka + €+ Yy) + O (&%), (2.20)

Substituting (2.20) into (2.1), we get the dispersion relation for the
bending vibrations of a circular rod

A0 = EJk 4 ViR (InYaka + C + ). (2.21)

If we consider that the moment of inertia of a circle J = 1/4md*,
then Eq. (2.21) coincides with Eq. (1.6).

c) Bending vibrations of a thin corductor of elliptical cross section.
1. Let the contour equation of the conductor cross section be described
in the coordinate system X, Y by the equation

X2fat Y2 B2 =1, (2.22)

We introduce the elliptical coordinates £, n with the help of the
relation

E=X-+iY=hch(E+ in)
(hz=a2—b2, a=hchE, b=hshg )
0<E<Coe, —an<m, L=Inlla-b)/hl). (2.29)

The function that realizes the conformal mapping of the exterior
of the ellipse (2.22) onto the exterior of the unit circle has the form

vt VE—R
al-b *
The magnetic field of the unperturbed cylinder can be described
both by the scalar potential ¢o and by the z-component of the vector
potential A,

(2.24)

H, = rot (z,4,) . (2.25)

HO = V%o

The complex potential F of the magnetic field of a straight con-
ductor is

F=A,4+ip,=02InW, (2.26)
Substituring expressions (2.23) and (2.24) into (2.26), we get
Qo =10.21n, (2.27
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Hence we find the strength of the magnetic field at the surface of
the unperturbed elliptical conductor

21

Hy= 107 (eh? &y — cosm) (2.28)
and the particular solution (2.11)
v 2110“; ghTSE—E_—%Q—,{ . (2.29)
2. In elliptic coordinates Eq. (2.14) is written in the form
[@i} + 7971? — k*h?(ch?§ — coszn)] ¥ = (2.30)

We will represent the solutions of (2.30) as ¥ = Y £)¥(n). Then
[4.5]
(2.31)

%' (E) +(a + 16q ch 2£) x (E) =0 [
S 2> (2.32)

P” (M) — (a + 16g cos 2n) P (m) = 0
From the requirement of periodicity of ¥(n) we find the discrete
eigenvalues ay(q) and the corresponding Mathieu functions. In our
case these will be even functions of odd index:
Pp = Cgpn(M @)y  p=2n +1.

As XP( g) we must take the solution that satisfies the condition

(2.33)

xp (8} — 0

This property is possessed by the so-called Fek, p4(£, —q) functions,
which we shall denote by Q n44(£, ). The general solution of Eq.
(2.30) may be written thus:

as £ — oo,

oo

p=an--1=1

b,Q, (%, q)eey (M 9) . (2.34)
In connection with the fact that in the sense of approximation (2.1)
the quantity
g =Yg hh® £ 1, (2.35)
in the Fourier expansions of the Mathieu functions (2.33) it is sufficient
to confine oneself to terms of the expansion containing q in the zeroth
and first powers [4]. Therefore, we may assume that

Clang (M ) = Agn(f;fﬂ) cos (2n 1) -

+ Ay, W 005 (20 4 3) 1 + Ay, T cos (20 — 1) 7

n+3

(4, =1, 4P =q).

(2.36)

3. The coefficients bp in (2.34) are determined from the boundary
conditicn H-n =0, i.e.,

% = 79%(@-%@’):0 when £ =§o=In[(s + 5)/A] .7 (2.37)
Taking into account (2.29) and setting
o
S e = — ?:‘1 Bacep (0, 9) (2.38)
for £ =&y, we find
@
= % ’ pszn%d:l BPQQ—QI)—I;(TEE‘):{—E: . (239

We note that if cey(n,q) can be written in the form (2.36), then the

coefficients Bp in (2.38), (2.39) are expressed in terms of the coef-
ficients of the Fourier expansion op

d shgcosy

_Shecosm == Eo)
“OF ch?E —cosi1 (B="%

(2.40)

— Ea cos pn

=1

by the relations

By =1, + oy Ap s T O ) (2.41)
The values of op in series (2.40) are found in elementary fashion,
but the expressions obtained are clumsy and are not given here.
4. Knowing the expressions for the fields, we now turn to com-
puting the forces fy and f, == f* + f’’. These computations may also
conveniently be performed in elliptical coordinates. In this case

—_——— ch io sin n
i 2%, — 2 )¢ = e
ds="h V ch?E; — cost dn, Y=o el
A

L (2.42)

= i Hem——— ———
Y ==hsh¥sinn, 1 h]/chﬁio—-cos"'q a
Substituting (2.42) into the formula for f, we obtain, using (2.23)

and (2.28), the expression
f = YyooPw'' [ (a + ). (2 .43)

Integrating by parts, we reduce Eq. (2.4) for f, = f' -+ " to the
form

I i 9 chEysinyg
+= ga10m 5 P179m k7 g, — costn 4N (244)
The computation of fa is appreciably simplified by the fact that
d chésiny 3 shZcosq (2 .45)

9 ch¥E—cosin = OE chlE-—costq

Consequently, after very simple calculations, using (2.39), we find

= Ygoolw (] a2+ 1/ 82), (2 46)
I Qp(io, q)
O a E Bp? (¢ (an/ag)azgo (@47

5. From (2.1) and (2.43), (2.46), and (2.47) with condition (2.19)
we get the dispersion relation

pAu>2~EJ1cf-l+__[1 (1 +L)_

0|27\t
b 1< Qp Eov 9)
—w b 2 _ % 9
5t pgl B,? (%o, @) (an/aE)_=EJ (2.48)

6. When the eccentricity is small, i.e., h/a « 1, expression
(2.47) for f'* can be evaluated explicitly. In fact, expanding the left
side of (2.38) in a Fourier series and neglecting terms of higher order
of smallness than

sk (2.49)
we get

a ”
r _shBeosn =~ 2¢7% {cos M + 36725 cos 31},

ch?f —cos?n (250

The expansions of the functions cep have the form

cey (M) =cosn-geos3n ..., cesn) =cos3In+... (250
and, consequently,

2h 2h h?
&:—-m, Ba:—m(—*q—kﬁ" (,T_[:b—)?>- (2.52)

Here we have taken into consideration the facr thar &0 = (a+by/h. It
is now clear that, with the accuracy assumed, in (2.47) there remains
only the first term

I
"= 150 w(a+b)~ (0Q:/0%),_;, (253
Using the approximation
4 171 1 -
(@ o z?(?"‘" 'bT) (2.59)



62 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

we obtain (see (2.46) and (2.53))

— = b e 1 i 2,55
fo=t P =t (U Gt 259
7. The expression for Q; can be found as follows: substituting in
(2.31) for x(&) the value @; ® 1 — 8q and considering that, with the

assumed accuracy,

ch 28 = 1/,6%, (2.56)
we find the approximate equation for Qy( &)
Q)" (8) — (1 — 8¢ + 8% @, () = 0. (2.57)

This Bessel equation with fractional index has the following solution
with the required behavior as £ = «:

Q=K o (VB F) = Ky, (VBeF), (258)

Starring from the definition

oo
1 z \ntar 1
T T Nz N
K= g U= fel T ,go( 2> e T

we can obtain

‘1 c
QO =K@ K@+ [ g+ 5] @60
Hence, with (2.23) and (2.35), we find
Qi (8) -
L+ 5qyeE),
k2 (a4 b) k(a-+b) a-b a—b
=— = Zb[ln T+ o Yy } (2.61)

and, consequently (see (2.53)),

whk? b
h=—-55 ! 75 =

b
[ln k(a4+b) i a -+

%
€53

=YL e b

e + a;;bJ. (2.62)

Thus, the final expression for the total force will be

r % k(@ - b) atb
fv:’w’mm“[ln 7 T

+ 35, 269)

when a= b this formula goes over into (2.20). On making the sub-
stitution (2.63), we obtain dispersion relation (2.48) in the form

pAe? = EJkt +

[ k(a4b) . a-+b
in i

e %
C—

100 ¥ 78

4+ -2%} (2.64)

3, Stability conditions for current-carrying rods. At certain values
of the current 1 the frequency .?, linked with the cuirent and the
wavelength by Eq. (2.21) for circular rods and by Eq. (2.64) for ellip-
tical rods, becomes negative. This means that there is a solution for
w that leads to an exponential growth of the random perturbations.
Hence it follows that, starting from these current values, a straight
conductor will be unstable.

a) For a solid circular conductor from dispersion relation (1.5) or
from (2.21), after substituting the moment of inertia of a circle | =
= ma*/4, we get the following expression for the value of the current
at which the conductor loses stability:

10a%k V 2E
L e (3.1
2 Vin(2fka)—C =<1,
b) For an elliprical conductor from dispersion relation (2.64) we
get the following expression for the value of the cwrent at which the
conductor loses stability:

; 10k Vat+b VEF
£ Vb Vin{ajk (a + b)Y — e af/b —1/,C (a + b)fb

. (3.2

For vibrations of a solid conductor of elliptical cross section about
the major axis of the ellipse J = mab®/4, for vibrations about the minor
axis ] = wa’b/4,

Example, Consider a circular conductor of radius a= 0.1 cm. Let
a bending perturbation with wavelength L = 10 cm be propagated along
it. In another case let a= 1 cm and L = 100 cm. Let E = 10° kg/cm2 .
Then, for the first case from (3.1) we obtain I» > 39 kA, for the second
case I+ > 386 kA,

REFERENCES

1. N. I. Dolbin, "Propagationof elastic wavesin a current-carrying
rod,” PMTF, no. 2, 104, 1962,

2. H. Kolsky, Stress Waves in Solids, Oxford, 1953.

3. M. A. Leontovichand V. D. Shafranov, "Stability of aflexible
conductor in a longitudinal magnetic field," in: Plasma Physics and
Problems of Controlled Thermonuclear Reactions [in Russian], Izd-vo
AN SSSR, vol. 1, 1988.

4. N. W. McLachlan, Theory and Application of Mathieu Functions,
[Russian translation], Izd. inostr, lit,, 1953.

5. E. T. Whittaker and G. N. Watson, Modern Analysis, Vol. 2
[Russian translation], Fizmatgiz, 1963.

22 November 1965 Moscow



